Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Med Sci ; 21(3): 562-570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322593

RESUMO

Background: Cleavage factor Im25 (CFIm25) regulates cell function by affecting mRNA editing processes and plays diverse roles in various diseases. Studies have found that peripheral blood monocytes are valuable in diagnosing and prognosing coronary atherosclerosis. However, no studies have examined the predictive value of CFIm25 expression in peripheral blood monocytes for coronary atherosclerosis. Methods and Results: We collected the coronary angiography results of 267 patients and calculated the Gensini score to evaluate their degree of coronary atherosclerosis. We isolated peripheral blood monocytes and detected CFIm25 RNA expression. Based on their Gensini score, we divided the patients into negative (0, n = 46), mild lesion (≤ 8, n = 71), moderate lesion (8-23, n = 76), and severe lesion (≥ 23, n = 74) groups. Results showed that CFIm25 expression correlated negatively with the Gensini score and the number of involved coronary vessels. Univariate and multivariate binary logistic regression analyses showed that CFIm25 expression in peripheral blood monocytes was a protective factor for severe lesions, ≥ 50% stenosis, and three-vessel lesions. The areas under the receiver operating characteristic curve of CFIm25 expression for predicting lesions, severe lesions, ≥50% stenosis, and three-vessel lesions were 0.743, 0.735, 0.791, and 0.736, respectively. Conclusions: CFIm25 expression in peripheral blood monocytes correlates negatively with the degree of coronary atherosclerosis and helps predict the severity and number of coronary artery lesions.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Doença da Artéria Coronariana , Humanos , Constrição Patológica , Angiografia Coronária , Monócitos , Índice de Gravidade de Doença , Fator de Especificidade de Clivagem e Poliadenilação/genética
2.
J Cancer Res Clin Oncol ; 150(1): 8, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195952

RESUMO

BACKGROUND: NUDT21 (Nudix Hydrolase 21) has been shown to play an essential role in multiple biological processes. Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world. However, the biological function of NUDT21 in PAAD remains rarely understood. The aim of this research was to identify the prediction value of NUDT21 in diagnosis, prognosis, immune infiltration, and signal pathway in PAAD. METHODS: Combined with the data in online databases, we analyzed the expression, immune infiltration, function enrichment, signal pathway, diagnosis, and prognosis of NUDT21 in PAAD. Then, the biological function of NUDT21 and its interacted protein in PAAD was identified through plasmid transduction system and protein mass spectrometry. Expression of NUDT21 was further verified in clinical specimens by immunofluorescence. RESULTS: We found that NUDT21 was upregulated in PAAD tissues and was significantly associated with the diagnosis and prognosis of pancreatic cancer through bioinformatic data analysis. We also found that overexpression of NUDT21 enhanced PAAD cells proliferation and migration, whereas knockdown NUDT21 restored the effects through in vitro experiment. Moreover, NDUFS2 was recognized as a potential target of NUDT21.We further verified that the expression of NDUFS2 was positively correlated with NUDT21 in PAAD clinical specimens. Mechanically, we found that NUDT21 stabilizes NDUFS2 and activates the PI3K-AKT signaling pathway. CONCLUSION: Our investigation reveals that NUDT21 is a previously unrecognized oncogenic factor in the diagnosis, prognosis, and treatment target of PAAD, and we suggest that NUDT21 might be a novel therapeutic target in PAAD.


Assuntos
Adenocarcinoma , Fator de Especificidade de Clivagem e Poliadenilação , NADH Desidrogenase , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Proliferação de Células , NADH Desidrogenase/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Especificidade de Clivagem e Poliadenilação/genética
3.
Cell Rep ; 42(12): 113479, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999979

RESUMO

Alternative polyadenylation (APA) plays a major role in controlling transcriptome diversity and therapeutic resistance of cancers. However, long non-coding RNAs (lncRNAs) involved in pathological APA remain poorly defined. Here, we functionally characterize LINC00921, a MED13L/P300-induced oncogenic lncRNA, and show that it is required for global regulation of APA in non-small cell lung cancer (NSCLC). LINC00921 shows significant potential for reducing NSCLC radiosensitivity, and high LINC00921 levels are associated with a poor prognosis for patients with NSCLC treated with radiotherapy. LINC00921 controls NUDT21 stability by facilitating binding of NUDT21 with the E3 ligase TRIP12. LINC00921-induced destabilization of NUDT21 promotes 3' UTR shortening of MED23 mRNA via APA, which, in turn, leads to elevated MED23 protein levels in cancer cells and nuclear translocation of ß-catenin and thereby activates expression of multiple ß-catenin/T cell factor (TCF)/lymphoid enhancer-binding factor (LEF)-regulated core oncogenes (c-Myc, CCND1, and BMP4). These findings highlight the importance of functionally annotating lncRNAs controlling APA and suggest the clinical potential of therapeutics for advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Regiões 3' não Traduzidas , beta Catenina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Proteínas de Transporte/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Poliadenilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Open Biol ; 13(11): 230221, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989222

RESUMO

Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from Encephalitozoon cuniculi to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins. We find a large number of contacts between both proteins in the complex, and notably in the region between CTD1 and CTD2. A similarity is also observed between CTD2 and the TATA-box binding protein (TBP) domains. Separately, we have determined the structure of the terminal CTD3 domain of CPSF73, which also belongs to the TBP domain family and is connected by a flexible linker to the rest of CPSF73. Biochemical assays demonstrate a key role for the CTD3 of CPSF73 in binding Symplekin, and structural models of the trimeric complex from other species allow for comparative analysis and support an overall conserved architecture.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Encephalitozoon cuniculi , Fatores de Poliadenilação e Clivagem de mRNA , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
5.
Sci Adv ; 9(47): eadj0123, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992178

RESUMO

Transcriptional dysregulation is a recurring pathogenic hallmark and an emerging therapeutic vulnerability in ovarian cancer. Here, we demonstrated that ovarian cancer exhibited a unique dependency on the regulatory machinery of transcriptional termination, particularly, cleavage and polyadenylation specificity factor (CPSF) complex. Genetic abrogation of multiple CPSF subunits substantially hampered neoplastic cell viability, and we presented evidence that their indispensable roles converged on the endonuclease CPSF3. Mechanistically, CPSF perturbation resulted in lengthened 3'-untranslated regions, diminished intronic polyadenylation and widespread transcriptional readthrough, and consequently suppressed oncogenic pathways. Furthermore, we reported the development of specific CPSF3 inhibitors building upon the benzoxaborole scaffold, which exerted potent antitumor activity. Notably, CPSF3 blockade effectively exacerbated genomic instability by down-regulating DNA damage repair genes and thus acted in synergy with poly(adenosine 5'-diphosphate-ribose) polymerase inhibition. These findings establish CPSF3-dependent transcriptional termination as an exploitable driving mechanism of ovarian cancer and provide a promising class of boron-containing compounds for targeting transcription-addicted human malignancies.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Ovarianas , Feminino , Humanos , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
6.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737260

RESUMO

Alternative polyadenylation (APA), a posttranscriptional mechanism of gene expression via determination of 3'UTR length, has an emerging role in carcinogenesis. Although abundant APA reprogramming is found in kidney renal clear cell carcinoma (KIRC), which is one of the major malignancies, whether APA functions in KIRC remains unknown. Herein, we found that chromatin modifier MORC2 gained oncogenic potential in KIRC among the genes with APA reprogramming, and moreover, its oncogenic potential was enhanced by 3'UTR shortening through stabilization of MORC2 mRNA. MORC2 was found to function in KIRC by downregulating tumor suppressor DAPK1 via DNA methylation. Mechanistically, MORC2 recruited DNMT3A to facilitate hypermethylation of the DAPK1 promoter, which was strengthened by 3'UTR shortening of MORC2. Furthermore, loss of APA regulator NUDT21, which was induced by DNMT3B-mediated promoter methylation, was identified as responsible for 3'UTR shortening of MORC2 in KIRC. Additionally, NUDT21 was confirmed to act as a tumor suppressor mainly depending on downregulation of MORC2. Finally, we designed an antisense oligonucleotide (ASO) to enhance NUDT21 expression and validated its antitumor effect in vivo and in vitro. This study uncovers the DNMT3B/NUDT21/APA/MORC2/DAPK1 regulatory axis in KIRC, disclosing the role of APA in KIRC and the crosstalk between DNA methylation and APA.


Assuntos
Carcinoma de Células Renais , Fator de Especificidade de Clivagem e Poliadenilação , Neoplasias Renais , Fatores de Transcrição , Humanos , Regiões 3' não Traduzidas , Carcinogênese/genética , Carcinoma de Células Renais/genética , Metilação de DNA , Neoplasias Renais/genética , Poliadenilação , Fatores de Transcrição/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética
7.
Plant Physiol ; 193(1): 537-554, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37335917

RESUMO

Cleavage and polyadenylation specificity factor (CPSF) is a protein complex that plays an essential biochemical role in mRNA 3'-end formation, including poly(A) signal recognition and cleavage at the poly(A) site. However, its biological functions at the organismal level are mostly unknown in multicellular eukaryotes. The study of plant CPSF73 has been hampered by the lethality of Arabidopsis (Arabidopsis thaliana) homozygous mutants of AtCPSF73-I and AtCPSF73-II. Here, we used poly(A) tag sequencing to investigate the roles of AtCPSF73-I and AtCPSF73-II in Arabidopsis treated with AN3661, an antimalarial drug with specificity for parasite CPSF73 that is homologous to plant CPSF73. Direct seed germination on an AN3661-containing medium was lethal; however, 7-d-old seedlings treated with AN3661 survived. AN3661 targeted AtCPSF73-I and AtCPSF73-II, inhibiting growth through coordinating gene expression and poly(A) site choice. Functional enrichment analysis revealed that the accumulation of ethylene and auxin jointly inhibited primary root growth. AN3661 affected poly(A) signal recognition, resulted in lower U-rich signal usage, caused transcriptional readthrough, and increased the distal poly(A) site usage. Many microRNA targets were found in the 3' untranslated region lengthened transcripts; these miRNAs may indirectly regulate the expression of these targets. Overall, this work demonstrates that AtCPSF73 plays important part in co-transcriptional regulation, affecting growth, and development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcrição Gênica , Regulação da Expressão Gênica , Plantas/metabolismo , Poliadenilação/genética
8.
Mol Oncol ; 17(12): 2743-2766, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37356089

RESUMO

Although early diagnosis and therapeutic advances have transformed the living quality and outcome of cancer patients, the poor prognosis for metastatic patients has not been significantly improved. Mechanisms underlying the complexity of metastasis cannot be simply determined by the straightforward 'cause-and-effect relationships'. We have developed a 'dry-lab-driven knowledge discovery and wet-lab validation' approach to embrace the complexity of cancer and metastasis. We have revealed for the first time that polymetastatic (POL) melanoma cells can utilize both the secretory protein pathway (S100A11-Sec23a) and the exosomal crosstalk (miR-487a-5p) to transfer their 'polymetastatic competency' to the oligometastatic (OL) melanoma cells, via synergistic co-targeting of the tumor-suppressor Nudt21. The downstream deregulated glycolysis was verified to regulate metastatic colonization efficiency. Further, two gene sets conferring independent prognosis in melanoma were identified, which have the potential for clinical translation and merit future clinical validation.


Assuntos
Exossomos , Melanoma , MicroRNAs , Humanos , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transporte Biológico , Exossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas S100/genética , Proteínas S100/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo
9.
Biomol NMR Assign ; 17(1): 43-48, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36723825

RESUMO

The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3' end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73-CPSF100 derived from the parasite Encephalitozoon cuniculi. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Processamento de Terminações 3' de RNA , Ressonância Magnética Nuclear Biomolecular , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Precursores de RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
10.
Wiley Interdiscip Rev RNA ; 14(3): e1757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35965101

RESUMO

The mammalian cleavage factor I subunit CFIm25 (NUDT21) binds to the UGUA sequences of precursor RNAs. Traditionally, CFIm25 is known to facilitate 3' end formation of pre-mRNAs resulting in the formation of polyadenylated transcripts. Recent studies suggest that CFIm25 may be involved in the cyclization and hence generation of circular RNAs (circRNAs) that contain UGUA motifs. These circRNAs act as competing endogenous RNAs (ceRNAs) that disrupt the ceRNA-miRNA-mRNA axis. Other emerging roles of CFIm25 include regulating both alternative splicing and alternative polyadenylation (APA). APA generates different sized transcripts that may code for different proteins, or more commonly transcripts that code for the same protein but differ in the length and sequence content of their 3' UTRs (3' UTR-APA). CFIm25 mediated global changes in 3' UTR-APA affect human physiology including spermatogenesis and the determination of cell fate. Deregulation of CFIm25 and changes in 3' UTR-APA have been implicated in several human diseases including cancer. In many cancers, CFIm25 acts as a tumor suppressor. However, there are some cancers where CFIm25 has the opposite effect. Alterations in CFIm25-driven 3' UTR-APA may also play a role in neural dysfunction and fibrosis. CFIm25 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of CFIm25 as a regulator of the aforementioned RNA processing events, modulation of CFIm25 levels may be a novel viable therapeutic approach. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Neoplasias , Animais , Humanos , Masculino , Regiões 3' não Traduzidas , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias/genética , Poliadenilação , RNA Circular/genética , RNA Circular/metabolismo
11.
Stem Cell Reports ; 18(1): 81-96, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563685

RESUMO

Alternative polyadenylation (APA) gives rise to transcripts with distinct 3' untranslated regions (3' UTRs), thereby affecting the fate of mRNAs. APA is strongly associated with cell proliferation and differentiation status, and thus likely plays a critical role in the embryo development. However, the pattern of APA in mammalian early embryos is still unknown. Here, we analyzed the 3' UTR lengths in human and mouse pre-implantation embryos using available single cell RNA-seq datasets and explored the underlying mechanism driving the changes. Although human and mouse early embryos displayed distinct patterns of 3' UTR changing, RNA metabolism pathways were involved in both species. The 3' UTR lengths are likely determined by the abundance of the cleavage factor I complex (CFIm) components NUDT21 and CPSF6 in the nucleus. Importantly, depletion of either component resulted in early embryo development arrest and 3' UTR shortening. Collectively, these data highlight an essential role for APA in the development of mammalian early embryos.


Assuntos
Mamíferos , Poliadenilação , Humanos , Camundongos , Animais , Regiões 3' não Traduzidas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Celular , Proliferação de Células , Mamíferos/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo
12.
Mol Cancer ; 21(1): 210, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376892

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS: The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS: We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS: The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Colorretais/patologia , Elonguina/genética , Elonguina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Nucleic Acids Res ; 50(17): 9780-9796, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36043441

RESUMO

Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleavage and polyadenylation (APA). Inhibition of the AR by Enzalutamide globally regulates APA in PC cells, with specific enrichment in genes related to transcription and DNA topology, suggesting their involvement in transcriptome reprogramming. AR inhibition selects promoter-distal polyadenylation sites (pAs) enriched in cis-elements recognized by the cleavage and polyadenylation specificity factor (CPSF) complex. Conversely, promoter-proximal intronic pAs relying on the cleavage stimulation factor (CSTF) complex are repressed. Mechanistically, Enzalutamide induces rearrangement of APA subcomplexes and impairs the interaction between CPSF and CSTF. AR inhibition also induces co-transcriptional CPSF recruitment to gene promoters, predisposing the selection of pAs depending on this complex. Importantly, the scaffold CPSF160 protein is up-regulated in CRPC cells and its depletion represses HT-induced APA patterns. These findings uncover an unexpected role for the AR in APA regulation and suggest that APA-mediated transcriptome reprogramming represents an adaptive response of PC cells to HT.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator Estimulador de Clivagem/metabolismo , Humanos , Masculino , Nitrilas , Feniltioidantoína , Poliadenilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(6): 507-512, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35732608

RESUMO

Objective To investigate the effect of over-expression of nudix hydrolase 21 (NUDT21) on the proliferation of colon cancer HCT-116 cells and its mechanism. Methods The NUDT21 over-expression plasmid was constructed by Gibson assembly. The colony formation assay and CCK-8 assay were used to detect cell proliferation. The cell cycle of HCT-116 cells was detected by flow cytometry. Western blot was performed to detect the expressions of P53, cyclin-dependent kinase 2 (CDK2), phosphorylated retinoblastoma protein at serine 780 (p-Rb-Ser780), and p-Rb-Ser608. Results The sequencing results showed that the NUDT21 over-expression plasmid was successfully constructed. After the NUDT21 over-expression plasmid was transfected into HCT-116 cells, the expressions of NUDT21 mRNA and protein in the cells were significantly increased. The over-expression of NUDT21 inhibited the proliferation of HCT-116 cells and arrested the cell cycle in G0/G1 phase. The expressions of CDK2, p-Rb-Ser608, and p-Rb-Ser780 proteins decreased while the expression of P53 protein increased. Conclusion Over-expression of NUDT21 inhibits the proliferation of HCT-116 cells by blocking P53/CDK2/Rb signal pathway.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Neoplasias do Colo , Ciclo Celular/genética , Proliferação de Células/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células HCT116 , Humanos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Nucleic Acids Res ; 50(6): 3096-3114, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234914

RESUMO

The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3' UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.


Assuntos
MicroRNAs , Poliadenilação , Regiões 3' não Traduzidas , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fibrinogênio/genética , Mamíferos/genética , MicroRNAs/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
16.
Nat Commun ; 13(1): 705, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121750

RESUMO

Predicting the pathogenicity of biallelic missense variants can be challenging. Here, we use a deficit of observed homozygous carriers of missense variants, versus an expected number in a set of 153,054 chip-genotyped Icelanders, to identify potentially pathogenic genotypes. We follow three missense variants with a complete deficit of homozygosity and find that their pathogenic effect in homozygous state ranges from severe childhood disease to early embryonic lethality. One of these variants is in CPSF3, a gene not previously linked to disease. From a set of clinically sequenced Icelanders, and by sequencing archival samples targeted through the Icelandic genealogy, we find four homozygous carriers. Additionally, we find two homozygous carriers of Mexican descent of another missense variant in CPSF3. All six homozygous carriers of missense variants in CPSF3 show severe intellectual disability, seizures, microcephaly, and abnormal muscle tone. Here, we show how the absence of certain homozygous genotypes from a large population set can elucidate causes of previously unexplained recessive diseases and early miscarriage.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Predisposição Genética para Doença/genética , Homozigoto , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genética Populacional/métodos , Genótipo , Humanos , Islândia , Lactente , Deficiência Intelectual/patologia , Masculino , Linhagem , Fenótipo , Síndrome , Sequenciamento Completo do Genoma/métodos
17.
Genes Dev ; 36(3-4): 210-224, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35177536

RESUMO

3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.


Assuntos
Proteínas de Ligação a DNA , Precursores de RNA , Ubiquitina-Proteína Ligases , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Genes Dev ; 36(3-4): 195-209, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35177537

RESUMO

The 3' ends of almost all eukaryotic mRNAs are generated in an essential two-step processing reaction: endonucleolytic cleavage of an extended precursor followed by the addition of a poly(A) tail. By reconstituting the reaction from overproduced and purified proteins, we provide a minimal list of 14 polypeptides that are essential and two that are stimulatory for RNA processing. In a reaction depending on the polyadenylation signal AAUAAA, the reconstituted system cleaves pre-mRNA at a single preferred site corresponding to the one used in vivo. Among the proteins, cleavage factor I stimulates cleavage but is not essential, consistent with its prominent role in alternative polyadenylation. RBBP6 is required, with structural data showing it to contact and presumably activate the endonuclease CPSF73 through its DWNN domain. The C-terminal domain of RNA polymerase II is dispensable. ATP, but not its hydrolysis, supports RNA cleavage by binding to the hClp1 subunit of cleavage factor II with submicromolar affinity.


Assuntos
Poliadenilação , Precursores de RNA , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Mamíferos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
19.
mBio ; 12(5): e0219621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488451

RESUMO

Host shutoff in influenza A virus (IAV) infection is a key process contributing to viral takeover of the cellular machinery and resulting in the downregulation of host gene expression. Analysis of nascently transcribed RNA in a cellular model that allows the functional induction of NS1 demonstrates that NS1 suppresses host transcription. NS1 inhibits the expression of genes driven by RNA polymerase II as well as RNA polymerase I-driven promoters, but not by the noneukaryotic T7 polymerase. Additionally, transcriptional termination is deregulated in cells infected with wild-type IAV. The NS1 effector domain alone is able to mediate both effects, whereas NS1 mutant GLEWN184-188RFKRY (184-188) is not. Overexpression of CPSF30 counteracts NS1-mediated inhibition of RNA polymerase II-driven reporter gene expression, but knockdown of CPSF30 expression does not attenuate gene expression. Although NS1 is associated with nuclear chromatin, superresolution microscopy demonstrates that NS1 does not colocalize with genomic DNA. Moreover, NS1 mutants and NS1 fusion proteins, unable to associate with nuclear chromatin and displaying an altered subcellular distribution are still able to attenuate reporter gene expression. However, tethering NS1 artificially to the cytoskeleton results in the loss of reporter gene inhibition. A NS1 deficient in both native nuclear localization signals (NLS) is able to inhibit gene expression as effective as wild-type NS1 when a synthetic NLS relocates it to specific structures of the nucleus. Colocalization experiments and reporter gene cotransfection experiments with a NS1 fusion guiding it to nuclear speckles suggest that the presence of NS1 in nuclear speckles seems to be essential for host shutoff. IMPORTANCE We investigated the role of IAV nonstructural protein 1 NS1 in host gene shutoff-a central feature of IAV replication. We demonstrate that the effector domain of NS1 alone mediates host gene shutoff by inhibition of host transcription and by deregulation of the polyadenylation (polyA) signal-mediated 3' termination of host transcription. NS1 mutated in amino acids 184 to 188 fails to shut off host gene expression. Knockdown of CPSF30 does not result in transcriptional attenuation. By analyzing the subcellular localization of modified NS1 proteins and relating these data to their ability to inhibit reporter gene expression, we show for the first time that the presence of NS1 in granular structures of the nucleus-representing most likely nuclear speckles-seems to be essential to mediate host gene shutoff. Thus, our data present so far unknown insights into the molecular and spatial requirements needed for IAV-NS1-mediated host shutoff.


Assuntos
Núcleo Celular/virologia , Vírus da Influenza A Subtipo H7N7/metabolismo , Influenza Humana/genética , Influenza Humana/virologia , Transcrição Gênica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H7N7/genética , Influenza Humana/metabolismo , Domínios Proteicos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas não Estruturais Virais/genética
20.
RNA ; 27(10): 1148-1154, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34230059

RESUMO

CPSF73 is the endonuclease that catalyzes the cleavage reaction for 3'-end processing of mRNA precursors (pre-mRNAs) in two distinct machineries, a canonical machinery for the majority of pre-mRNAs and a U7 snRNP (U7 machinery) for replication-dependent histone pre-mRNAs in animal cells. CPSF73 also possesses 5'-3' exonuclease activity in the U7 machinery, degrading the downstream cleavage product after the endonucleolytic cleavage. Recent studies show that CPSF73 is a potential target for developing anticancer, antimalarial, and antiprotozoal drugs, spurring interest in identifying new small-molecule inhibitors against this enzyme. CPSF73 nuclease activity has so far been demonstrated using a gel-based end-point assay, using radiolabeled or fluorescently labeled RNA substrates. By taking advantage of unique properties of the U7 machinery, we have developed a novel, real-time fluorescence assay for the nuclease activity of CPSF73. This assay is facile and high-throughput, and should also be helpful for the discovery of new CPSF73 inhibitors.


Assuntos
Bioensaio , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Histonas/metabolismo , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Sistema Livre de Células , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/genética , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fluorescência , Corantes Fluorescentes/química , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Proteólise , Precursores de RNA/química , Precursores de RNA/genética , Rodaminas/química , Ribonucleoproteína Nuclear Pequena U7/química , Ribonucleoproteína Nuclear Pequena U7/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...